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KINEMATIC WAVE THEORY FOR DEBRIS FLOWS

by 

M. Arattano and W.Z. Savage

ABSTRACT

We present a mathematical model for debris flows, based on 
kinematic wave theory, and apply our model to published data from 
two debris flows that occurred in 1981 on Mount St. Helens. The 
model, which is based on a relationship originally developed for 
water flow in open channels, shows good agreement with the field 
data.

INTRODUCTION

Debris flows are mixtures of water and highly concentrated 
dispersions of very poorly sorted sediment (up to boulder-sized 
particles) that often move at very high speeds and have great 
destructive power (Pierson, 1986, Takahashi, 1978). Debris flows 
usually appear as waves (surges) with a steep front. The steep 
front consists largely of boulders, which can be surprisingly 
large and which move as though they were on top of the tread of a 
tractor (Johnson, 1970). Behind the bouldery front the number of 
boulders gradually decreases and the surge becomes charged with 
pebble-sized fragments and then more and more diluted until it 
appears as muddy water (Johnson, 1970; Costa and Williams, 1984).

Debris flows have been modeled as dilatant fluids using 
Bagnold's (1954) dilatant fluid concept (Takahashi, 1978 and 
1980), and as Bingham (1922) plastic fluids (Yano and Daido, 
1965; Johnson, 1970; Rodine and Johnson, 1976). Chen (1987 and 
1988) has recently reviewed Japanese concepts for modeling debris 
flows and has formulated a generalized viscoplastic fluid model 
for these flows.

Debris flows have also been described successfully by models 
originally developed to simulate surface water flows (Laenen and 
Hansen, 1988 ). The water flow models, other than generating 
useful information about the possible evolution of debris flows, 
allow at the very least comparison between water flow behavior
and the flow behavior of debris.

)
At this time little is known about the details of initiation 

of debris flows. For example, debris flows can be triggered by



volcanic eruptions, by landslides, and by failure of natural dams 
(Pierson, 1986). In some cases it has been possible to 
reconstruct the conditions for debris flow initiation and to find 
a close analogy with dam-break phenomena (Gallino and Pierson, 
1984). This, of course, is particularly true if a debris flow 
initiates during failure of a natural dam.

Dam-break phenomena have been analyzed using kinematic wave 
theory (Hunt, 1982). Kinematic waves are a distinctive type of 
wave motion that arises in one-dimensional flow problems. 
Kinematic wave properties follow directly from the continuity 
equation causing these waves to be distinct from classical wave 
motions. Classical wave motions depend on the complete momentum 
equation and are, therefore, called dynamic and possess at least 
two wave velocities at each point. Kinematic waves possess only 
one wave velocity. Therefore dynamic waves can move in two 
directions from their source while kinematic waves move only in 
one direction (Lighthill and Whitham, 1955).

Kinematic wave theory is presented in detail by Lighthill 

and Whitham (1955). They show that, for Froude numbers, Fr < 2 ,

kinematic waves follow dynamic waves at a lower speed. However, 
since dynamic waves rapidly decay, kinematic waves assume the 
dominant role in disturbance propagation far from the source. 
Also, kinematic waves develop steep shock fronts that are a 
consequence of overtaking of slower waves by faster waves 
(Lighthill and Whitham, 1955).

Lighthill and Whitham (1955) discuss, in particular, the 
asymptotic behavior of a finite volume of water interacting with 
an infinite volume of water and show that nonlinear interactions 
and shock confluence result in the loss of information concerning 
initial conditions. Weir (1982 and 1983) models the asymptotic 
behavior of kinematic waves of finite volume in dry channels and 
applies his model to lahars. Weir (1983) emphasizes that since 
information concerning initial conditions is lost in kinematic 
wave theory, this theory can be particularly useful in describing 
natural phenomena in which initial conditions may not be known.

In this paper we will show that, regardless of the cause of 
initiation, the subsequent behavior of debris flows can be 
described by a model similar to a model developed for the 
movement of floodwaves resulting from a dam-break. The dam-break 
model by Hunt (1982), based on kinematic wave theory, applies at 
large distances downstream from a failed dam. We modify this 
model, originally developed for flow in wide rectangular 
channels, to account for flow in the narrow channels in which 
debris flows generally occur.

We also show the analogies between our model and Weir's



(1982) model for lahars. Weir (1982) uses kinematic wave theory, 
with discharge instead of flow height as the dependent variable 
in the continuity equation. Thus, Weir's model cannot be used 
when only flow height is available and discharge is unknown. 
Weir's (1982) model was used by Pierson (Pierson and others, 
1990) to reconstruct the propagation of. the catastrophic lahars 
triggered by the Nevado del Ruiz eruption of 13 November 1985.

We have applied our model to data collected on October 1, 
1981 from two gaging stations along a reach of a stream channel 
on Mount St. Helens (Pierson, 1986). The model shows very good 
agreement with some of the observed data.

THE MATHEMATICAL MODEL

One-dimensional, unsteady flow in a rectangular channel with 
a fixed slope is described by the momentum equation,

uux+ut+ghx - gi-gif (1) 

and the continuity equation (Abbott, 1966),

ht+uhx+hux - 0 (2) .

In these equations (known as De Saint Venant equations) t is 
time; g is the gravitational acceleration constant; u is 
velocity; x is distance along the channel; i is channel slope; h

is flow height; and if is the bed resistance term. The x and t 

subscripts denote partial derivatives.

Equations (1) and (2) are derived for an infinitesimal 
element of fluid of unit width. The first two terms in equation 
(1) represent the Eulerian acceleration over the element while 
the third term represents the potential gradient over the 
element. The first term in equation (2) represents the 
accumulation within an element and the last two terms the net 
inflow into the element.

Dimensionless variables are introduced in the following in 
order to put equation (1) into a form involving quantities that 
can be neglected. The dimensionless variables we introduce are:

h, -   ** - £ (3), 
. * H * L



u -   r -   (4) ,

where L is a typical length, H is a typical flow height, and U is 
a typical velocity in the flow. Using dimension less variables the 
momentum and continuity equations become

U2 du. dir jj d/r\J r * * i " * 4 .   [M    +    ]+      - l-lf (5) ,
C 'ar at iar '.

and

. +«   - - 0 (6).
a* *a*

c/2
For our problem (see equation 12) the term   can also be

gL

iU2 
written as    . The term U2/gH , which is the square of the

Froude number, Fr , is a measure of the relative importance of 

kinetic and potential energy in the flow.

In kinematic wave theory it is assumed that the product of 
the Froude number and the acceleration terms and the product of 
the ratio H/L and the flow height gradient term in equation (5) 
are negligible. Equation (5) then becomes simply:

(7)

and the flow is described by equation (6) . Hunt (1982) , in his 
kinematic wave analysis of the dam-break problem, shows that,

when F<2 , which is almost always true far downstream, the

neglected terms in equation (5) are less than 10 percent of the 
channel slope term after the floodwave front has traveled a 
distance of 5.2 times the length of the original dammed 
reservoir.



In hydraulics we have an empirical relationship between 
discharge, Q, and flow height, h,

where u and TJ are constants.

We also know that discharge is the product of velocity and 
flow cross-sectional area. Since the data we will use are in 
terms of flow height, we assume an analogous relationship between 
velocity and flow height. In fact, we show in appendix I that the 
velocity u can be written as a function of flow height h 
(equation A9). Equation (A9) in dimensionless terms becomes

",-/** (8),

As we show in appendix II, the value of k depends on the 
width of the flow cross-section. Since R = h for an infinitely 
wide rectangular section we have from equation (A5) and (A7b) 
that k is 2/3. Fpr a rectangular flow cross-section of zero 
width, k is zero. Thus for rectangular channels that have a width

between 0 and » k ranges between 0 and 2/3.

Differentiating equation (8) partially with respect to 

we obtain

and the second term in equation (6) becomes

3ir * dh dh
h   = to*   - ku    (9)* * * ^ '

Substituting this expression in equation (6) gives the 
continuity equation as



dh dh
  -+(*+lK  1 = 0 (10) .

Equation (10) , which governs the propagation of perturbations in 
flow height, in dimensional form is

ht+(k+T)uhx = 0 (11) .

In appendix I, by using the reduced form of the momentum 
equation (equation 7) and the Manning equation (equation Al) , we 
have defined a simple relationship between velocity and flow 
height given as equations (A9) or (8) . Then using this 
relationship in the continuity equation we have just derived a 
single first order equation governing the propagation of 
perturbations in flow height (equation 11) . In the next section 
we will use equation (11) as the governing equation for modeling 
debris flows as kinematic waves.

KINEMATIC WAVE MODEL FOR DEBRIS FLOWS

A possible condition for debris flow initiation is sketched 
in "Fig. 1. The debris mass from which the debris flow develops is 
represented to be like a water mass behind a dam before collapse. 
Again we emphasize that initial conditions like those sketched in 
Fig. 1 are not particularly important to the later behavior of 
debris flows when these flows are modeled as kinematic waves. 
Hence the choice of initial conditions is somewhat arbitrary. We 
also show in Fig. 1 the meaning of the parameters H and L that 
are used in what follows. The maximum initial (undisturbed) 
height of debris in the channel is H. The parameter H is 
analogous to the water height immediately behind an unbreached 
dam. The initial undisturbed length of the debris mass in the 
channel is L. The parameter L is analogous to the reservoir 
length behind an unbreached dam. Since a constant channel slope 
is assumed, the H and L parameters are linked by the relation

Referring to Fig. 1, we see that the flow height h(x,t) in 
equation (11) is subject to the initial conditions,

h(x,0) =   x for 0 <: x * L
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/i(jc,0) - 0 for -oo < jc < 0 and L < x < +« (13) .

Kinematic theory predicts that a shock front will develop at 

the front of the debris flow during its motion. We require, xs(t) ,

the location of the shock front, to move with the speed of the 
fluid immediately behind the shock, that is,

(14), 
at

where

*,(0) - L (15).

Equation (15) is the initial condition for differential equation 
(14).

Omitting the asterisk subscript for notational convenience, 
equations (8) and (10) and conditions (13), (14), and (15) can be 
rewritten as,

u-h k (16),

ht+(k+l)h khx - 0 (17), 

where

/i(jc,0) - jc for 0 * jc * 1

/t(jc,0) - 0 for -oo < jc < 0 and 1 < x < +«> (18) , 

and

(19),
at

) 
where



*5(0) - 1 (20)

Solving equation (17) by the method of characteristics 
(Abbott, 1966) we find that

along characteristic curves that have the slope given by

  = (k+\)h k (22) . 
dt

Equations (21) and (22) are both ordinary differential equations 
that are integrated to give

h - Cl (23) 

along the characteristic curves given by

- C2 (24) .

Here C1 and C2 are constants of integration and k is constant

along the channel. Note from the Appendices that k is constant 
because no abrupt change in cross-sectional form is assumed for 
the flow.

Using the initial condition (18), we can calculate the 
integration constant for any characteristic curve. In the (x,t) 
plane (Fig. 2) a characteristic curve given by equation (24)

intersects the x axis at x =» JCQ ( where 0 < JCQ < 1 ) when t = 0. 

Thus for t ** 0 equation 24 gives the integration constant

r m r 
0

and equation (24) becomes
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( 25 )

Recall from equation (18) , that the dimensionless flow 
height h(x,0), obtains the value

h(x,G) - x for 

that is,

fc-*o ( 26 )-

Eliminating the parameter " XQ " from equations (25) and (26) we 

find the characteristic curve equation,

h (27).

Equation (27) represents a straight line in the (x,t) plane. 
The characteristic curves are thus straight lines and along each 
curve the flow height, h, has a constant value. They leave the x 
axis along the interval 0 < x < 1, as an expansion fan in the 
(x,t) plane (Fig. 2) . Outside this interval, along the x axis, 
the flow height is zero, as we can see from initial conditions 
(18) , and the characteristic curves leaving the x axis are 
straight lines parallel to the t axis.

The intersection of the two families of characteristic 
curves gives the position of the shock, which must be inserted in 
the solution to prevent the physically absurd situation of two 
different flow height values at the same point. The position of 
the shock can be found analytically by assuming that debris 
volume is conserved during the process (Weir, 1982, 1983; Hunt, 
1982) .

Defining A to be debris volume per unit cross-sectional 
width we then have,

JO

for debris-volume conservation. Remembering the meaning of the H 
and L parameters (Fjig. 1) , we can write

11



±HL (29)

Using equation (29) in equation (28) and writing equation 
(28) in dimensionless variables we get

As shown by Hunt (1982), equation (30) is easily integrated 
when equation (27) is used to change the integration variable 
from x to h; that is,

dx - (1 +k(k+ l)hk- lf)dh (31) . 

Thus equation (30) takes the simple form,

Jo o '

in which hs(t) is the flow height immediately behind the shock.

Treating the variable t as a parameter, assuming k as 
constant, and calculating the integral of (32), we can solve the 
result for t giving,

(33).

The.x coordinate of the shock can then be found by 
eliminating the variable t from equations (27) and (33) to give

l-k,

2kh 2ks

Equations (33) and (34) are thus parametric equations of the 
shock front in the (x,t) plane. The solution in the region 
between the shock front and the t-axis is given by equation (27), 
while outside of this region the solution is given by h = 0 (Fig.

12



2) . Far from the origin, for large times and behind the forward 
shock, the characteristic curves that define the wave appear to 
originate approximately from the origin, which shows graphically 
the relative lack of importance of initial conditions to 
subsequent, late-time, kinematic wave propagation.

ANALOGIES WITH WEIR'S (1982) MATHEMATICAL MODEL 

Equation (27) can be rewritten as

(35 )

L

for large x fluid height, h, is small, and thus   is small so
x

equation (27) can be approximated by

i .1
* (36)*+r

Equation (36) shows that at a fixed point, x, water depth, h, 

varies as t k .

Weir (1982), using kinematic wave theory and an asymptotic 
solution valid for large times, has also shown discharge of 
lahars to vary as a negative power of time. Weir (1982) arrives 
at the expression

(37)

where K is a constant parameter and fix) is a complicated function

K

of x. Thus at a fixed point, x, discharge varies as t*~l . Weir 

(1982) accounts for changing slope in his model by defining slope

as px~r

13



COMPARISON WITH DEBRIS-FLOW DATA

When modeling lahars, eruption time can be determined from 
seismic records and the value of the variable t to be used in 
equation (36) is then also known. In fact, Weir (1982) uses such 
information in his equation describing the change of discharge 
with time for lahars.

For debris flows we normally do not know the time of flow 
initiation. However this difficulty can be resolved by installing 
two gaging stations at a fixed distance along the channel.

Knowing the distance " / " between the two stations and adopting

the same value of k for both cross sections, we can then write 
equation (34) in dimensional form for the two stations as the two 
equations (the subscript for x has been omitted)

(38)
h. 2kH
-±
H

and

£^ = ^±L.^__^ (39 ) 
L h2 2kH

~H

in which ^ and h2 are the peak flows at the first and second

stations, respectively, / is the distance between the two gaging

stations, and x is the unknown distance of the first gaging 
station from the origin of the flow. We can express the parameter

L in equations (38) and (39) as a function of channel slope, i ,

and initial height, H, by equation (11). Equations (38) and (39) 
then give a system of equations for the unknowns H and x. Solving 
this system we get the following expressions for H and x as 
functions of k:

14



H (40)

2k 

and

If we do not know the cross sectional shape and hence k, we 
can choose a trial value for k (for example 2/3, valid for wide 
rectangular channels) to get approximate values for H and x from 
equations (40) and (41) . Equation (33) can then be used to

I-*,2
obtain t in dimensionless form; that is t m     , where h , the

shock height, is equal to the peak flow height.

To express t in dimensional form we use the definition of 
nondimensional time (equation 4) . This requires that we know U

± 
and L, where U is given by U=CHki 2 (equation A10) and L is given

TT

by im   (equation 12) . To calculate C, we use mean values of
Lf

peak velocities and flow heights at stations 1 and 2 in equation

± 
(A7) , u=Ch ki 2 . Then solving for C, and assuming C to be constant

with flow height, we have U and hence dimensional t, which 
represents a value for the elapsed time since debris flow

initiation. This value of t gives an estimated time, te for the 

appearance of the debris flow at the first gaging station.

If equation (36) is plotted with log h(t) as the ordinate 
and log t as the abscissa, then, for fixed x, a straight line

with slope   results. If we find that a plot of the logarithm
rv

)
of the hydrograph data collected at the first gaging station, 
that is log h(t) , against the logarithm of time, log t, (starting

15



from the time te ) can be approximated as a straight line with

negative slope, then we can estimate a value for k. The use of 
this value for k in equations (40) and (41) then gives improved 
values for H and x and we can repeat the calculations. The 
iteration is rapidly convergent and gives final consistent values 
for H, x, t and k. Finally, having determined the parameters 
necessary to predict the hydrograph beyond the first gaging 
station, we can predict the hydrograph at the second gaging 
station and compare it with the recorded hydrograph at that 
station.

To test our model we have used data (Pierson, 1986) recorded 
in 1981 in a reach of the Muddy River immediately downstream from 
the terminus of the Shoestring Glacier, on the southeast flank of 
Mount St. Helens (Fig. 3) . Among the many different methods used 
for debris-flow monitoring at this site, there are two gaging 
stations separated by a distance of 273 m. Between the two 
stations (labeled with 1A and IB in Fig. 4) the channel slope is 
approximately constant (about 0.184 radians) except for the 10-m- 
high falls shown in Fig. 4.

On 1 October 1981, four debris flows occur ing a few minutes 
apart were recorded at gaging stations 1A and IB. The first two 
surges had peak flows at the first station of 3.36 m and 2.36 m 
(Fig. 5) , respectively. Using the original hydrographs and the 
data shown in Table 1, we have calculated by the procedure 
outlined above values of H, x, t and k for these first two

surges. Values of ^ and /^ used in the calculation are given in

Table 1. These flow heights are peak flow height values above the 
channel bottom.

Hydrographs for the first and second debris flows recorded 
at the first station (1A) are shown in Figs. 6 and 7 together 
with theoretical hydrographs predicted by kinematic wave theory. 
The values of k have been calculated by linear regression of the 
recorded hydrographs in a bilogarithmic plane. These regressions 
also are shown in Figs. 6 and 7, and the values of k are in Table 
2. In that table we also show values obtained for x, H and L. In 
both cases the x values, which give an estimate of the distance 
from the source of the debris flows to the first gaging station, 
are large enough to apply kinematic wave theory.

We have calculated two approximate values of the Froude 

number ( Fr -    ) using the mean front velocity values and the

mean peak flow values between the two stations (Table 1) . We see 
that both values are less than 2 (Fr = 0.67 for the first debris-

16
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Figure 3. - Location of the monitored channel reach of the Muddy 
River at Mount St. Helens, Washington (After Pierson, 
1986).
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Figure 5. - Stage hydrographs of multiple surges of Oct. 1, 1981 
debris'flows. Stations are shown in Fig. 4 (After 
Pierson, 1986).
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flow and Fr = 0.68 for the second), which is consistent with 
Hunt's criteria for omitting the derivative terms in equation 
(5) .

Theoretical hydrographs forecast by the model for the first 
and second debris flows at the first and second gaging stations 
are shown in Figs. 8 and 9. The theoretical hydrographs show good 
agreement with recorded data at the gaging stations in both 
cases.

DISCUSSION

The agreement between measured and theoretical hydrographs 
in Figs. 8 and 9 implies that debris-flow behavior can be 
considered to be similar to clear water behavior to which 
kinematic wave theory and the Manning equation are usually 
applied. In fact, Pierson (1986) has shown that the Manning 
equation can be applied to debris flows when sediment 
concentration is as much as 76-78 percent by weight. Observing 
debris flows one notices that they become more fluid behind a 
boulder-laden front and can develop features typical of water 
behavior such as the hydraulic jump shown by Costa and Williams 
(1984) .

_ . We have no information about channel cross sections at the 
two stations and hence have been unable to estimate discharge 
hydrographs for them. Of course, if we knew cross sectional areas 
we could determine discharge by using equation (A7) to calculate 
mean velocities for changing flow heights at both sections 1A and 
IB.

The assumption of a constant k value along the channel seems 
to be reasonable for flows 1 and 2. We see that at both stations 
predicted hydrographs with constant k values show good agreement 
with the actual debris flows. However, with no information about 
cross-sectional shape, we have been unable to verify the k values 
obtained by the procedures outlined above. The k value for the 
second debris flow is smaller than the k value for the first 
debris flow. This could occur if the flow cross section was 
narrowing by deposition, by a reduction in flow height, or a 
combination of these effects. However, we need to remember that 
we supposed k to be constant for different flow heights in our 
theory.

The model allows a prediction of the distance that the 
debris flow has traveled from its point of inception to the first 
gaging station, x. Values found for x using equation (41) show 
that the two debris flows should have started on the Shoestring 
Glacier at 415 m and 809 m from the first station, respectively. 
We note that Pierson (1986) has postulated that one source of 
these flows could be glacier outburst floods.
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Also recall that our model does not account for changing 
slopes. Note in Fig. 4 that the slope in the reach increases 
upstream, which could affect the estimated values for t, H, x 
and, thus, k. The model could be improved by taking account of 
changing slope by using an expression for slope as a function of 
distance such as that used by Weir (1982).

Note that the linear regression made on recorded hydrograph 
data at the first station (Fig. 6) would allow an estimation of 
x, as well as k, from equation (36). However, in both cases, this 
estimated x value was less than 50 percent of that calculated 
with equation (41).

More data are needed to show the validity of this model. It 
would be useful to predict the movement along a stream channel of 
a known mass of debris caused by a landslide or a previous debris 
flow. Knowing debris volume, the amount of water required for 
mobilization, and the mean width of the stream channel, we could 
calculate the parameter A in equation (28) by dividing the debris 
and water volume by the mean channel width. Knowing the channel 
slope, we could then calculate the parameters H and L in equation 
(29). Also, if we have a value for k and for C along the stream 
channel we could predict the propagation of the debris flow along 
the channel.

Our model does not take into account other features of 
debris flows. For example, debris flows do not show a vertical 
front but a continuous, rapid rise to peak discharge that may be 
imperceptible to recorders. Whitham (1955) and Takahashi (1980) 
derived theoretical expressions to account for the lobate profile 
of the leading edge of a flow. Actually, Whitham 1 s (1955) 
equation has been derived to model the profile of the leading 
edge of a mass of water propagating along a stream channel after 
a dam failure, while Takahashi's has been derived for debris 
flows. We have not used such expressions here because of the 
steep front profile shown by the debris flows examined.

Our model does not allow any prediction about how far debris 
flows can travel. Theoretically kinematic waves propagate 
indefinitely. But shock height does decrease downstream until it 
reaches a practically null value after a finite distance from the 
starting point.

The model could be improved by using for the term if , which

accounts for bed resistance, a relationship that accounts for a 
Bingham behavior (Johnson, 1970) of the debris flow front. This 
Bingham behavior would account for the apparent strength of the 
slurry, a strength -fhat would keep the boulders in place at the 
front of the flow. It would substitute for the relationship we
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have adopted for if in equation (7) , which comes from open- 

channel-flow theory for water.

The model does not explain the effects of deposition or 
erosion along the stream channel during flow because it is based 
on the hypothesis of constant volume. That hypothesis is made 
when we assume A to be a constant to find the parametric equation 
of the shock front in the (x,t) plane (equations 33 and 34).

If, because of erosion of deposits along the channel, the 
peak flow value gets larger during the flow from the first to the 
second gaging station, the model cannot be applied. This could 
have happened during the third and fourth debris flows of 1 
October 1981 (Fig. 5) . Both flows, though much smaller than the 
first two, show a higher peak flow value at the second station 
(Table 1) . The difference between the peak flow values at the 
first and second station is particularly large for the fourth 
surge.

The higher peak flow value at the second gaging station 
could also be due to an abrupt change in cross-sectional form for 
small flow heights at that station. If the cross section narrows, 
we can get a higher peak flow value like the one recorded. But, 
again, our model cannot account for such a circumstance, since we 
have supposed the channel cross-sectional form to remain constant 
along the channel.

A narrow flow cross section, close to a rectangular form, 
would have a small value for the parameter k and, thus, a narrow 
hydrograph with a rapid decrease in flow height behind the peak 
flow value. Thus, rapid decrease of flow height with time would 
be predicted because small values of k give large exponents in 
equation (36), causing the flow height, h, to decrease more 
rapidly with time. An increase of peak flow height at the second 
station due to a narrower flow cross section that is close to a 
rectangular form should then show a narrow hydrograph at that 
station and, indeed, for the last surge, we observe that the 
hydrograph recorded at the second station is narrower than the 
one recorded at the first. Kinematic wave theory predicts a 
continuous spreading out of the hydrograph proceeding downstream, 
if the value of k does not change along the channel and no mass 
is added to the flow.

In summary, both erosion and an abrupt change in cross- 
sectional form of the flow could explain the higher peak flow at 
the second station and the narrow hydrograph recorded for the 
last two debris flows. We hope to account for such effects in our 
future modeling efforts.
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CONCLUSIONS

To model debris flows, we have modified a mathematical 
approach developed from open channel hydraulic theory. This 
approach was originally used to predict the behavior of a mass of 
water suddenly released in a wide rectangular stream channel 
after a dam-break. Our model appears to simulate the form of 
stage hydrographs from two debris flows that occurred in the 
Muddy River, on Mount St. Helens, on October 1, 1981, reasonably 
well. From the hydrographs of these debris flows, recorded by two 
gaging stations 273 m apart on the stream, we have been able to 
use the first station hydrograph and the peak flow of the second 
hydrograph to calculate the model parameters and then forecast 
the form of the hydrographs at the second station. These 
forecasts have shown good agreement with actual data, and a 
behavior of the debris flows examined that is very similar to 
that of clear water. We have also demonstrated analogies between 
debris flows and dam-break phenomena. The model has allowed an 
estimation of the position of the sources of the debris flows and 
the time of travel of these flows to the first station. Also k 
values for the channel, k being a parameter that accounts for 
changes of hydraulic radius with flow depth, have been 
calculated. If the initial volume of debris is known our model 
could be used to give a rough forecast of propagation along a 
stream channel of a debris mass deposited by a landslide or a 
previous debris flow.

More research is needed to verify the general applicability 
and reliability of this model. At this time the model cannot 
include the effects of changing channel slope, nor erosion or 
deposition during debris flow movement, and it cannot be used to 
predict the distance that a debris flow can travel. Nevertheless 
the model provides a quantitative theory that can be useful for 
future research on debris flows behavior.

APPENDIX I

The Manning equation, originally developed to describe 
uniform flow of water in open channels, is used in the following

to develop an expression for the bed resistance term, if , in the

momentum equation (equation 1). We show that R, the hydraulic 
radius, can be expressed in the Manning equation as a function of

flow height, h, so that the bed resistance term, i* , becomes also

a function of flow height, h, and, as a consequence, u can also 
be described in terms of flow height. Expressing the bed 
resistance term as a function of flow height is essential to the 
integration of equation (2).
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The Manning equation is (Chow, 1959)

I - -
u - -R 3 i 2 (Al), 

n

where

u = mean velocity of the fluid 
n = roughness coefficient 
R = hydraulic radius 
i = channel slope.

Hydraulic radius R is the ratio of cross-sectional area of 
the flow to the wetted perimeter of the channel (Rouse, 1938) . 
Although hydraulic radius is a function of the cross-sectional 
flow geometry, the factor R does not fully describe the geometry 
of the flow cross-section. In fact, R may have the same magnitude 
for an infinite variety of flow cross-sectional forms (Rouse, 
1938) .

We now find R as a function of flow height, h. Discharge, Q, 
for uniform flow in a channel is expressed as the product of the 
mean velocity of the fluid, u, and water area, S, or, using 
equation Al, as

1 -- 
Q= -SR 3 i 2 

n

or

Q-Ki 2 (A2), 

where

K^-SR (A3). 
n

The term K is known as the conveyance of the channel cross- 
section, and since K is a function of the depth of flow, h, 
through S and R, it may be assumed (Chow, 1959) that
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(A4),

where Y is a coefficient and 6 is called the hydraulic exponent

for uniform flow computation (Chow, 1959). For rectangular flow 
cross-sections of different width, b, Chow (1959) shows

L

that 6 varies within a range of 3.33 to 2 when   varies within a
b

range of 0 to «> .

However for most channels, except for channels with abrupt 
changes in cross-sectional form, a logarithmic plot of K as 
ordinate against the depth h as abscissa will appear 
approximately as a straight line (Chow, 1959), and

thus 6 and Y ^ay be assumed constant for most flow cross- 

sectional areas.

Since we can express the flow area for any cross-sectional 
form, as a product of a mean width, b, and flow height, h, which 
is equivalent to approximating the flow cross section with a 
rectangular flow cross section, we substitute bh for S in 
equation (A3), and using the resulting expression for K in 
equation (A4) we obtain

-2 1 1(4-2)
R- -^-Y 4* 4

or as

R - ahk* (A5) ,

which expresses the hydraulic radius R as a function of flow 
height. Here,

3
n 2 1 3

a- Y 4 and JL- (8-2) (A6) . 
3 ' l 4 V

) . i
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For rectangular flow cross-sections, as 6 varies from 2 to

3.33, &j varies between 0 and 1, depending on the channel width. 

For most flow cross-sectional areas, except for channels with 

abrupt changes in cross-sectional form, &j , like 6 , may be 

assumed constant.

Substituting equation (A5) in equation (Al) gives:

j_ 
u - Ch ki 2 (A7a)

in which

(A7b)

and

, 1
C--a 3 (A7c) 

n

Solving equation (A7) for the channel slope, i, and recalling 

that because of the kinematic wave approximation, imL ,we have

u2

for the bed resistance term if . Rearranging equation (A7) we have

    (-)* (A9), 
U H

that is, the dimensionless relationship between velocity and flow 
height in which the) typical velocity is given by
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_ 
U-CHki 2 (A10)

and H is a typical height of flow.

We emphasize that the coefficient C in equation (A7) is 
more than a roughness coefficient. In fact, it is given

_i
Y 2 

by C « -  where the roughness coefficient, n, is hidden in the
b

coefficient y (equation A4). Since the mean flow area width, b,

is generally a function of flow height, C becomes a function of 
flow height. Thus assuming C to be constant can be a rough 
approximation.

Sometimes debris flows start on unbroken hillsides and cut 
V-shaped channels (Varnes, 1978), and in many other cases the 
flow cross-sectional form is close to a triangular form. For a 
triangular flow cross section the hydraulic radius can be shown 
to be given by

R - since h 
2

where 2a is the angle of intersection of the channel walls. Thus,

j_i-' ^ 1, since NT , . . . . in this case C «  (  ) and no approximation is made in
71 2

assuming a relationship like equation (A5) for the hydraulic 
radius and C is no longer a function of flow height. However, 
notice that for triangular cross-sectional forms the continuity 
equation (equation 2) changes to

ht+uh+-hur - 0 .
* X f\ X

APPENDIX II

In order to shpw the dependence of jfcj and a on flow cross-
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sectional shape, we have calculated the parameters ibj and a for

eight different cross sectional forms (Figs. 10 and 11) using 
equation (A5) for hydraulic radius in terms of flow height, that

is R m ah 1 . We have determined values of the hydraulic radius,

the ratio of flow cross-sectional area to wetted perimeter, for 
these eight sections, for values of fluid height ranging from 0.5 
to 5 m, a range of fluid height that can reasonably account for 
many real cases. For each section one value of R was calculated 
every 0.5 m. These were then plotted against h in bilogarithmic

planes and linear regressions were performed for ifcj and a for

every cross sectional form. Values for the squared correlation 
coefficient are also shown in Figs. 10 and 11.

The first four sections are rectangular sections with widths 
w of 2, 8, 16 and 32 m, respectively. Linear regressions for 
these four sections are shown in Fig. 10. It is easily seen that

the width of the cross section affects both fcj and a ; the 

narrower the rectangular cross section the smaller are the values 

for &j and a . We can show that a ranges between 0, for

rectangular flow cross sections of zero width, and 1, for 
rectangular cross sections of infinite width. Notice from Fig. 10 
that the correlation coefficient is higher for larger widths: the 
larger the rectangular cross section the better equation (A5) 
expresses R.

We have also determined the values for k^ and a for four

different trapezoidal sections (Fig. 11) using equation (A5). 
Observe that equation (A5) gives better results for trapezoidal 
sections than for rectangular sections: the correlation 
coefficient is high also for sections with small basal width b 
(Figs, lla and lib). However, remember that in order to 
approximate the cross-sectional form with a trapezium the 
continuity equation (equation 2) needs to be changed.

The parameter &x depends on the cross section basal width, 

b, in the trapezoidal case. In fact for the same b value a larger 

z ( z m cotga , where a is the slope of the side) gives a

larger &x value (Figs. 11 a and b) . Notice that, on the contrary,
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Figure 10. - Bilogarithmic linear, regressions of hydraulic radius 
against flow height for four different rectangular

sections and respective a and &, values.
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Figure 11. - Bilogarithmic linear regressions of hydraulic radius 
against flow height for four different trapezoidal

sections and respective a and fc values.

36



the coefficient a does not change significantly with side slope.

Observe also that the fcj values in this case are much larger than

for a rectangular section in which the width w is the same value 
as b.

The fcj value expresses the closeness of the section to a 

triangular form. For triangular sections fcj - 1 . For the same 

side slope the fcj value for the section of Fig. lib is larger

than the fcx value for the sections of Fig. lie and lid, despite

the fact that they have larger b values. This can be explained by 
observing that the cross section whose linear regression is shown 
in Fig. lib is much closer to a triangular form than the cross 
sections of Figs, lie and lid.

The coefficient a is less affected by the closeness of the

section to a triangular form. It increases with b and is not much 
influenced by the side slope.
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